无码一区二区三区,无码不卡av一区二区三区,无码高清免费看抱,无码任你躁久久久久久,无码一区二区,无码精品国产va在线观看

撥號(hào)18861759551

你的位置:首頁(yè) > 技術(shù)文章 > 選擇正確的測(cè)試目標(biāo)

技術(shù)文章

選擇正確的測(cè)試目標(biāo)

技術(shù)文章

Choosing the Correct Test Target

Test targets are useful when evaluating or calibrating an imaging system's performance or image quality. This could include troubleshooting the system, certifying or evaluating measurements, as well as establishing a foundation to ensure the system works well with another. Image quality can be defined by different components, particularly resolution, contrast, modulation transfer function (MTF), depth of field (DOF), and distortion; therefore, one or more types of test targets may be necessary or helpful depending upon the type of system being constructed or what needs to be measured. Fortunay, an array of targets exists that cater towards specific systems including cameras, visual displays, or even a single, thin lens. To be able to choose the correct test target, it is important to first understand the components of image quality.

 

COMPONENTS OF IMAGE QUALITY

Resolution

Resolution is an imaging system's ability to distinguish object detail. It is often expressed in terms of line-pairs per millimeter (lp/mm) as seen in Figure 1. A low resolution image usually lacks fine detail and is often blurry, whereas a high resolution image is highly detailed and clear.

Figure 1: Relation of Line-Pairs to Square Waves

 

To illustrate this concept, imagine two squares being imaged onto pixels of a CCD camera. Assuming that the primary magnification of the lens is such that one square fills one camera pixel (Figure 2a), if there is no space between the filled pixels, it will appear as one large, red rectangle. However, if "white space", or space distinctively different from the original pixel color, is found between the pixels, the camera will be able to distinguish among the two squares (Figure 2b). Hence, the pairing of the red square and "white space" becomes one lp/mm, which corresponds to two separate pixels.

Figure 2: Pair of Red Squares Unresolved (a) vs. Resolved (b)

 

Contrast

Contrast is a measurement of the separation between the light and dark regions of an image. More specifically, contrast is a change in the intensity or brightness from one point to another. It affects how effectively the differences between the object and the shades of gray in the background are reproduced. An image with the highest contrast is one in which black is truly black and white is truly white, without any shades of gray in between. As contrast is reduced, the distinction between black and white begins to blur, in a very literal sense, and shades of gray appear (Figure 3).

Figure 3: Contrast in Relation to Pixels

Contrast is often expressed in terms of percentage (%) and is calculated by using Maximum Intensity (Imax) and Minimum Intensity (Imin), as expressed in Equation 1. It can also be represented by a periodic function (i.e. square wave or sine wave), or a function that alternates regularly and instantaneously between two levels.

 

Modulation Transfer Function (MTF)

Modulation Transfer Function, or MTF, is a measurement of an imaging lens' ability to transfer contrast from the object plane to the image plane at a specific resolution. The object and image planes are the spatial areas where the object and the image preside. The object plane is in front of the imaging system, and the image plane is either in front or behind the imaging system depending on whether the image is real or virtual. MTF is expressed with respect to image resolution (lp/mm) and contrast (%), as seen in Figure 4. Typically, as resolution increases, contrast decreases until a cut-off point, at which the image becomes irresolvable and grey.

Figure 4: Example MTF Curve of 0.13X PMAG Imaging Lens

 

Another component of MTF, in addition to the aforementioned resolution and contrast, is diffraction limit. Diffraction limit is a physical limit restricting a lens from being able to image points or edges perfectly. Since it is constrained by the wave nature of light, even a "perfectly" designed and manufactured lens cannot achieve diffraction limited performance. However, designers utilize a variety of methods to reduce aberrations and increase overall system accuracy in order to come as close as possible to reaching a system's ideal diffraction limit.

Correspondingly, a len's geometry contributes to its ability to reproduce good quality image. Lens Diameter (D), Focal Length (f) and f/# (Equation 2) all affect MTF.

f/# is the light gathering ability of a lens. As Lens Diameter increases, f/# decreases. Low f/# lenses collect the most light, thereby making them ideal for light restrictive applications. Although high f/# can improve an imaging lens' performance, increasing it too much can be detrimental because it can cause the diffraction limit to become progressively worse.

 

Depth of Field (DOF)

Depth of Field, or DOF, is the ability of a lens to maintain a desired amount of image quality as the object being viewed moves in and out of focus. DOF is defined with an associated resolution and contrast, as both suffer when an object is placed closer or farther from the optimal working distance (Figure 5). DOF also applies to objects with depth, since high DOF lenses can image the whole object clearly. DOF is estimated by a single value calculated from the diffraction limit, making it a theoretical approximation. It is difficult, however, to make a genuine comparison because many imaging lenses are not diffraction limited. For example, two lenses may have the same f/# (i.e. equal diffraction limit), but do not necessarily have similar performance or comparable DOF. Therefore, the only way to truly determine DOF is to use a test target to test it.

Figure 5: Geometric Representation of DOF for Low and High f/# Imaging Lenses

 

Distortion

Distortion is a type of geometrical aberration that causes a difference in magnification of the object at different points in the image. As light rays carry the image of an object through a system, various points are misplaced relative to the center of the field, or the central point of the image. Therefore, distortion is not an aberration that causes blurs, but an aberration that causes a dislocation. Distortion is calculated by:

 

where AD is the Actual Distance and PD is the Paraxial, or Predicted, Distance.

Distortion, represented by a percentage, can be either positive or negative. A positive percentage represents "pincushion" distortion, whereas a negative percentage represents "barrel" distortion. Figure 6 illustrates barrel and pincushion distortion compared to an ideal, perfectly square non-distorted image.

Figure 6: Barrel and Pincushion Distortion

 

Although distortion is present in almost all lenses, it can be corrected by using short focal lengths. Unfortunay, short focal length systems tend to suffer from more diffraction effects than their longer focal length counterparts. Correcting for one component of image quality undeniably affects another, a fact that must always be taken into account. An important concept to keep in mind is that distortion causes information about the object to be misplaced but not lost. The original, un-distorted image can be reconstructed through image analysis software.

 

TYPES OF TEST TARGETS

A variety of test targets exist to help characterize resolution, contrast, modulation transfer function (MTF), depth of field (DOF), and distortion in an imaging system. Use the following guide of the most popular targets to make choosing the correct test target as easy as possible.

 

1951 USAF Resolution Targets

Consist of horizontal and vertical bars organized in groups and elements. Each group is comprised of up to nine elements within a range of twelve groups. Every element is composed of three horizontal and three vertical bars equally spaced with one another within a group and corresponds to an associated resolution based on bar width and space. The vertical bars are used to calculate horizontal resolution and horizontal bars are used to calculate vertical resolution. These targets are very popular when considering a target for testing resolution.

 

Typical Applications

Testing Resolution in Applications such as Optical Test Equipment, Microscopes, High Magnification Video Lenses, Fluorescence and Confocal Microscopy, Photolithography, and Nanotechnology

 

IEEE Resolution Targets

Designed to characterize the amount of resolution a camera or display system is able to reproduce from an original image. Because resolution can be different throughout the field of view, both horizontal and vertical resolution can be measured in the center of the target as well as the four corners. IEEE Resolution Targets can also be used to check scanning, linearity, aspect, shading, and interlacing, as well as measure TV lines.

 

Typical Applications

Testing of Analog Imaging Systems

 

Ronchi Rulings

Consist of a square wave optic with constant bar and space patterns that carry a high contrast ratio. They are ideal for reticle and field calibration requirements, and often used for evaluating resolution, field distortion and parafocal stability. Ronchi Rulings are not limited to only calculating resolution; they can be used for diffraction testing.

 

Typical Applications

Testing the Parameters of Resolution and Contrast, Diffraction Testing

 

Distortion Targets

Used for calibrating imaging systems for distortion, which is a geometrical aberration that may misplace certain parts of the image. These targets consist of a grid of dots that are separated by various distances depending on the application.

 

Typical Applications

Lower Focal Length Lenses, Systems that Carry a Wide Field of View

 

Depths of Field Targets

Depths of Field Targets Directly test the depth of field in imaging systems without the use of calculations. The target should be mounted 45° from the face of the lens that is parallel to the object to be viewed; the scale of the target consists of horizontal and vertical lines that measure frequency in line pairs per mm (lp/mm).

 

Typical Applications

Circuit Board Inspection, Security Cameras

 

Star Targets

Star Targets Ideal for identifying focus errors, astigmatism, as well as other focus differing aberrations. The target consists of a circle formed with alternating black and white radial lines emanating from a central point. Because the lines taper, a continuous change in resolution is present and can be measured in both vertical and horizontal directions without repositioning.

 

Typical Applications

Alignment of a System, Assistance with Assembly, Comparing Highly Resolved or Magnified Imaging Systems

 

EIA Grayscale Targets

EIA Grayscale Targets Useful for testing optical and video inspection systems, and consist of a standard pattern and carry two scales, one linear and the other logarithmic, which is useful depending on the linearity of the detector being used. Each scale has nine steps that are acuy tuned for a precise halftone pattern.

 

Typical Applications

Optical and Video Inspection Systems, Evaluating Contrast Levels in Cameras

 

Color Checker Targets

Color Checker Targets Used to determine true color balance or optical density of any color rendition system. They may be expanded to include more squares with a different assortment of colors and act as a reference for testing and standardizing color inspection and analysis systems.

 

Typical Applications

Color Rendition Systems, Digital Cameras and Photography

 

Exploring 1951 USAF Resolution Targets

1951 USAF Resolution Targets have been and are currently a standard when considering a target that tests the resolution of an imaging system. They consist of horizontal and vertical bars organized in groups and elements. Each group is composed of six elements, and each element is composed of three horizontal and three vertical bars equally spaced with one another. There can be a total of twelve groups, with larger numbers used for higher resolution. For example, a standard resolution 1951 target consists of group numbers from -2 to 7, whereas a high resolution of -2 to 9; the element number is the same. The resolution is based on bar width and space, where the length of the bars is equal to five times the width of a bar (Figure 7). One Line Pair (lp) is equivalent to one black bar and one white bar. Vertical bars are used to calculate horizontal resolution and horizontal bars are used to calculate vertical resolution.

Figure 7: 1951 USAF Target Specifications

 

Qualitatively, the resolution of an imaging system is defined as the group and element combination directly before the black and white bars begin to blur together. Quantitatively, resolution (in terms of line pairs per millimeter, or lp/mm) can be calculated by:

 

It is important to keep in mind that calculating resolution with a 1951 USAF Target is subjective. In other words, it depends on who is looking at the target. Someone with 20/20 vision (using the Snellen Ratio) is able to discern higher resolution than someone with, for example, 20/25 or 20/30 vision. Even though the actual test yields precise resolution values, the user's vision can lead to imprecise measurements.

 

APPLICATION EXAMPLES

Example 1: Calculating Resolution with a 1951 USAF Resolution Target

When given a specified group and element number, one can easily calculate the resolution in lp/mm using Equation 4. For instance, if the vertical or horizontal bars start to blur at group 4 element 3, the resolution of the system can be designated as group 4 element 2. To quickly calculate resolution, use our 1951 USAF Resolution EO Tech Tool.

To convert lp/mm to microns (μm), simply take the reciprocal of the lp/mm resolution value and multiply by 1000.

 

Example 2: Understanding f/#

To understand the relationship between f/#, depth of field, and resolution, consider an example with a 35mm Double Gauss Imaging Lens (Figure 8). In this example, the lens will be integrated into a system which requires a minimum of 5 lp/mm (200μm) object resolution at 20% contrast. The diffraction limit , or cutoff frequency, is determined by Equation 7:

Figure 8: Graphical Representation of Resolution vs. f/# (Left) and DOF vs. f/# (Right) for a 35mm Double Gauss Imaging Lens

 

where λ is the wavelength of the system. For simplicity, Equation 7 assumes a non-aberrated, ideal system. Because this system is expected to have aberrations, though, the diffraction limit decreases with increasing f/#. Determining an ideal f/# for this system leads to calculating the highest possible depth of field. Comparing resolution vs. f/#, it is evident that below f/3, the lens is limited by aberrations and cannot obtain the minimum desired resolution. However, "sping down" or closing the iris reduces aberrations and improves DOF. At f/4.2, diffraction effects caused by the optical elements within the imaging lens become more prominent than the effects from aberrations; this is the point at which the lens becomes diffraction limited. Beyond f/4.2, closing the aperture increases DOF, but reduces resolution. At f/13.5, the diffraction limit defines the extent of the desired resolution. Beyond f/13.5, resolution continues to decrease while DOF continues to increase. In this particular example, f/13.5 is the ideal f/# for an optimum depth of field at a minimum resolution.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線(xiàn)客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線(xiàn)咨詢(xún)
QQ客服
QQ:17041053
電話(huà)咨詢(xún)
0510-68836815
關(guān)注微信
国产妇女馒头高清泬20P多毛 亚洲日韩激情无码 中文字幕人妻三级中文无码视频 亚洲精品中文字幕乱码4区 在线观看黄色电影 亚洲中文波霸中文字幕 欧美日韩精品一区二区在线播放 精品精品国产理论在线观看 中文字幕在线不卡精品视频99 在线精品国产制服丝袜 亚洲色老汉AV无码专区最 一级无码奶水在线观看网站 狂野AV人人澡人人添 伊人国产综合视频 真人啪啪无遮挡免费 亚洲一区二区三区丝袜 男女啪啪激烈高潮喷出gif免费 麻豆国产AV丝袜白领传媒 亚洲AV无码乱码在线观看富二代 日韩精品人成在线播放 再深点灬舒服灬太大了的视频 亚洲色视视频在线观看 国产成人无码aⅴ片在线观看 国产性生交XXXXX无码 免费国产a国产片高清女厕所 最好看的免费观看视频西瓜 妺妺跟我一起洗澡没忍住 AV在线播放无码线 午夜亚洲AV永久无码精品 天堂中文在线资源 国产欧美日韩一区二区加勒比 国产成人免费ā片在线观看 国产影片中文字幕 在线看黄av免费网站 亚洲AV无码精品狠狠爱 纯肉无遮挡H肉视频在线观看 国产精品vⅰdeoXXXX国产 曰韩无码精品免费视频一区二区 大胆人gogo体艺术高清私拍 午夜精品久久久久久毛片 无码男男做受g片在线观看视频 内射人妻视频国内 亚洲天堂一级片 亚洲综合色婷婷在线影院p厂 亚洲中文字幕久在线 亚洲国产成人精品无码一区二区 亚洲无码真人视频 2014av天堂影音先锋 曰本女人牲交免费视频 亚洲综合网无码中文字幕 国产精品欧美一区二区三区 伊人影院久久 中国vodafonewifi精品网站 丰满的少妇愉情hd高清果冻传媒 亚洲孰妇无码AV在线播放 亚洲人成自拍蜜芽 欧美日韩色另类综合 亚洲天堂av在线 人妻丰满熟妞av无码区 中文字幕AV无码一区电影DVD 一本伊大人香蕉久久网 最新精品亚洲亚洲亚 337P粉嫩日本欧洲亚洲大胆 无码人妻精品一区二区三区在线 亚洲无aV码在线中文字幕 伊人婷婷色香五月综合缴缴情 吃奶呻吟打开双腿做受在线视频 国产精品对白刺激久久久 亚洲无码高清中字av 人人狠狠综合久久亚洲 被强行灌满精子的少妇 狠狠色欧美亚洲狠狠色WWW 亚洲国产制服丝袜无码av 一本无码av一区二区三区 亚洲综合色在线观看一区 亚洲无码黄频在线观看 伊人精品在线视频 日本50岁熟妇XXXX 亚洲人成网站18禁止影院 东京热人妻无码人av 亚洲欧洲国无码成人片 在线天堂最新版资源 美女自卫慰黄网站 中文字幕vs亚洲精品 中国女人FREE性HD国语 性中国熟妇videofreesexwww 这里只精品国产 亚洲国产香蕉碰碰人人 亚洲熟妇白浆无码AV在线 色依依av在线 最新精品国偷自产在线91 久久国产精品99精品国产 影音先锋色小姐 亚洲精品专区成人网站 真实的国产乱XXXX在线91 亚洲人禽杂交av片久久 一区二区三区精品毛片久久久 亚洲韩国精品无码一区二区 国产午夜人做人免费视频 成人a级毛片免费观看av 亚洲色成人WWW永久网站 无码里番纯肉h在线网站 在线观看免费播放av片 亚洲中文一本无码av在线无码 毛片A级毛片免费观看 亚洲欧洲国产码专区在线观看 日本伊人色综合网 久久久久久人妻一区精品 四虎影视久久久免费观看 三年片在线观看免费观看大全下载 天堂在线最新版中文 伊人久久大香线蕉午夜 在线无码中文强乱爆乳系列 亚洲天堂无码免费观看 一区二区三区加勒比AV 亚洲愉拍国产自91 婷婷四房色播 在线观看亚洲一区二区 18禁裸乳无遮挡啪啪无码免费 国产欧美久久一区二区 日韩精品少妇无码受不了 18禁黄网站禁片免费观看国产 一级风流片a级国产 亚洲AV永久无码精品国产精品 中文字幕无线手机在线 亚洲色成人网站WWW永久在线 亚洲AV乱码一区二区三区香蕉 一本精品99久久精品 亚洲五月丁香中文字幕 国产丰满乱子伦无码专区 性色AV网站 97久人人做人人妻人人玩精品 亚洲有码国产精品 免费人成视频x8x8 亚洲熟女av一区二区三区 天堂在线网www在线网 亚洲av日韩av男人的天堂在线 亚洲国产精品无码久久久蜜芽 久久人人爽人人人人片 99精品国产成人一区二区 色悠久久久久综合网香蕉 国产热の有码热の无码视频 亚洲日韩久久aVT无码天堂网 亚洲欧美成人综合久久久 日本人妻丰满熟妇久久久久久 一级毛片在线视频免费观看 亚洲精品成人AV观看香蕉 免费全部高h视频无码 中国GAY男男Av毛片免费看 精品久久久久久中文字幕 一区二区三区免费在线 日本添下边视频全过程 国产乱人伦AV在线无码 免费a级毛片无码 在线欧美 精品 第1页 亚洲人成无码久久久AAA片 亚洲日韩一区二区三区四区 亚洲综合网在线观看 日韩av无码一区二区三区无码 在线看黄A免费网站 大屁股大乳丰满人妻hd 国产乱xxⅹxx国语对白 性色AV一二三天美传媒 亚洲综合久久一区二区 国产av偷闻女邻居内裤被发现 色哟哟网站在线观看 在线亚洲精品中文字幕美乳 中文无码高潮到痉挛在线视频 亚洲最新AV在线 色窝窝亚洲av网在线观看 亚洲人成电影在线观看影院 国产成人无码A区视频 亚洲伊人久久大香线蕉五月天 香蕉久久久久久AV成人 97免费人妻无码视频 韩国和日本免费不卡在线v 亚洲日韩欧洲乱码av夜夜摸 国产精品户露av在线户外直播 中文字幕丰满伦子无码AB 日韩AV无码社区一区二区三区 男女性杂交内射女bbwxz 伊人色综合网久久天天 中文字幕99久久亚洲精品 亚洲中文字幕超麻 亚洲高清WWW色好看美女 粗硬黑大欧美aaaa片视频 亚洲日韩成人无码不卡 国产精品天天看天天狠 日韩精品无码一区二区视频 亚洲视频黄色无码 成av人电影在线观看 国产精品久久久久9999赢消 中文一区二区在线观看 97免费人妻在线视频 无码人妻丰满熟妇区BBBBXXXX 中国少妇无码专区 亚洲日韩国产另类精品乱码 无码专区一va亚洲v专区在线 永久免费AV无码网站在线 日韩精品人妻无码久久影院
扎兰屯市| 泽普县| 弋阳县| 图木舒克市| 上林县| 义马市| 梅河口市| 金川县| 大埔县| 峨边| 东至县| 许昌市| 泸西县| 维西| 安吉县| 兴宁市| 吉隆县| 石景山区| 万盛区| 云龙县| 宁蒗| 方正县| 梨树县| 鹤岗市| 香河县| 黑龙江省| 鹿泉市| 石家庄市| 买车| 汽车| 江达县| 梁河县| 偃师市| 青阳县| 冀州市| 仁怀市| 璧山县| 西华县| 中超| 博白县| 泰安市|